miércoles, 24 de febrero de 2016

Partículas Subatómicas NEUTRINO

Los neutrinos (término que en italiano significa ‘pequeños neutrones’, inventado por el científico italiano Enrico Fermi) son partículas subatómicas de tipo fermiónico, sin carga y espín 1/2. Desde hace unos años se sabe, en contra de lo que se pensaba, que estas partículas tienen masa, pero muy pequeña, y es muy difícil medirla. Hoy en día , se cree que la masa de los neutrinos es inferior a unos 5,5 eV/c2, lo que significa menos de una milmillonésima de la masa de un átomo de hidrógeno. Su conclusión se basa en el análisis de la distribución de galaxias en el universo y es, según afirman estos científicos, la medida más precisa hasta ahora de la masa del neutrino. Además, su interacción con las demás partículas es mínima, por lo que pasan a través de la materia ordinaria sin apenas perturbarla.

La masa del neutrino tiene importantes consecuencias en el modelo estándar de física de partículas, ya que implicaría la posibilidad de transformaciones entre los tres tipos de neutrinos existentes en un fenómeno conocido como oscilación de neutrinos.

En todo caso, los neutrinos no se ven afectados por las fuerzas electromagnética o nuclear fuerte, pero sí por la fuerza nuclear débil y la gravitatoria.


HISTORIA

La existencia del neutrino fue propuesta en 1930 por el físico Wolfgang Pauli para compensar la aparente pérdida de energía y momento lineal en la desintegración β de los neutrones según la siguiente ecuación:
                                 N= protones + electrones + electronvoltio

Wolfgang Pauli interpretó que tanto la masa como la energía serían conservadas si una partícula hipotética denominada «neutrino» participase en la desintegración incorporando las cantidades perdidas. Desafortunadamente, esta partícula hipotéticamente prevista había de ser sin masa, ni carga, ni interacción fuerte, por lo que no se podía detectar con los medios de la época. Esto era el resultado de una sección eficaz muy reducida. Durante 25 años, la idea de la existencia de esta partícula sólo se estableció de forma teórica.

De hecho, es muy pequeña la posibilidad de que un neutrino interactúe con la materia ya que, según los cálculos de física cuántica, sería necesario un bloque de plomo de una longitud de un año luz (9,46 billones de kilómetros) para detener la mitad de los neutrinos que lo atravesaran.


En 1956 Clyde Cowan y Frederick Reines demostraron su existencia experimentalmente. Lo hicieron bombardeando agua pura con un haz de 1018 neutrones por segundo. Observaron la emisión subsiguiente de fotones, quedando así determinada su existencia. A este ensayo, se le denomina experimento del neutrino.


En 1962 Leon Max Lederman, Melvin Schwartz y Jack Steinberger mostraron que existía más de un tipo de neutrino al detectar por primera vez al neutrino muónico. En el año 2000 fue anunciado por parte de la Colaboración DONUT en Fermilab el descubrimiento del neutrino tauónico. Su existencia ya había sido predicha, puesto que los resultados del decaimiento del bosón Z medidos por LEP en CERN eran compatibles con la existencia de 3 neutrinos.


En septiembre de 2011, la colaboración OPERA anunció que el análisis de las medidas para la velocidad de los neutrinos en su experimento arrojaba valores superlumínicos. En particular, la velocidad de una cierta clase de neutrino podría ser un 0,002 % mayor que la de la luz, lo que aparentemente contradiría la teoría de la relatividad.


Sin embargo, en los días posteriores al anuncio (que tuvo una espectacular difusión internacional), a través del británico Institute of Physics se hicieron patentes algunos desacuerdos entre miembros del equipo internacional sobre la necesidad de efectuar más pruebas, y de publicar los resultados en revistas con Peer Review, antes de dar más publicidad a estos primeros resultados.


Más recientemente, el 10 de noviembre de 2011, el director científico del CERN, Sergio Bertolucci, ha declarado a la prensa que «el experimento está siendo repetido por nosotros y por otros científicos en Estados Unidos, Japón e Italia», y que «lo más probable es que se demuestre que hubo un error en el experimento inicial y que el límite sigue siendo la velocidad de la luz». Un nuevo experimento en el CERN (Organización Europea para la Investigación Nuclear) ha arrojado el mismo resultado que el estudio del pasado mes de septiembre. No obstante Fernando Ferroni, presidente del INFN, afirmó: «El resultado positivo del experimento nos hace confiar más en el resultado, aunque habrá que esperar a ver los resultados de otros experimentos análogos en otras partes del mundo antes de decir la última palabra». Se ha dicho desde el mismo organismo que a la hora de la medida de la distancia recorrida por los neutrinos hubo un fallo en el sistema de posicionamiento (GPS), al tener un cable desconectado, por lo que la medida de la velocidad superlumínica ha sido descartada.





IMPLICACIONES ASTROFÍSICAS DE SU MASA

En el modelo estándar se consideraba inicialmente al neutrino como a una partícula sin masa. De hecho, en muchos sentidos se la puede considerar de masa nula pues ésta es, por lo menos diez mil veces menor que la del electrón. Esto implica que los neutrinos viajan a velocidades muy cercanas a la de la luz. Por ello, en términos cosmológicos al neutrino se le considera materia caliente, o materia relativista. En contraposición la materia fría sería la materia no relativista.

En 1998, durante la conferencia 0-mass neutrino, se presentaron los primeros trabajos que mostraban que estas partículas tienen una masa ínfima. Previamente a estos trabajos se había considerado que la hipotética masa de los neutrinos podía tener una contribución importante dentro de la materia oscura del Universo. Sin embargo, resultó que la masa del neutrino era insuficiente, demasiado pequeña para ser siquiera tenida en cuenta en la ingente cantidad de materia oscura que se calcula que hay en el universo. Por otro lado, los modelos de evolución cosmológica no cuadraban con las observaciones si se introducía materia oscura caliente. En ese caso las estructuras se formaban de mayor a menor escala. Mientras que las observaciones parecían indicar que primero se formaron las agrupaciones de gas, luego estrellas, luego proto galaxias, luego cúmulos, cúmulos de cúmulos, etc. Las observaciones, pues, cuadraban con un modelo de materia oscura fría. Por estos dos motivos se desechó la idea de que el neutrino contribuyera de forma destacada a la masa total del universo.




FUENTES

El Sol es la más importante fuente de neutrinos a través de los procesos de desintegración beta de las reacciones que acaecen en su núcleo. Como los neutrinos no interaccionan fácilmente con la materia, escapan libremente del núcleo solar atravesando también la Tierra. Aparte de las reacciones nucleares, hay otros procesos generadores de neutrinos, los cuales se denominan neutrinos térmicos ya que, a diferencia de los neutrinos nucleares, se absorbe parte de la energía emitida por dichas reacciones para convertirla en neutrinos. De esta forma, una parte de la energía fabricada por las estrellas se pierde y no contribuye a la presión, siendo la razón por la que se dice que los neutrinos son sumideros de energía. Su contribución a la energía emitida en las primeras etapas (secuencia principal, combustión del helio) no es significativa, pero en los colapsos finales de las estrellas más masivas, cuando su núcleo moribundo se encuentra a elevadísimas densidades, se producen muchos neutrinos en un medio que ya no es transparente a ellos, por lo que sus efectos se tienen que tener en cuenta.

Según los modelos solares, se debería recibir el triple de neutrinos que se detectan, ausencia que es conocida como el problema de los neutrinos solares. Durante un tiempo se intentó justificar este déficit revisando los modelos solares. El Sol quema el hidrógeno principalmente mediante dos cadenas de reacciones, la PPI y la PPII. La primera emite un neutrino y la segunda dos. Las hipótesis que se plantearon fueron que, quizá, la PPII tuviera una ocurrencia menor a la calculada debido a una falta de helio en el núcleo favorecido por algún tipo de mecanismo (frenado de la rotación por viscosidad) que mezclara parte del helio producido con el manto lo cual reduciría la cadencia de la PPII. Actualmente el problema va camino de resolverse al plantearse la teoría de la oscilación de neutrinos.

Fuentes artificiales:

Las principales fuentes de neutrinos artificiales son las centrales nucleares, las cuales pueden llegar a generar unos 5·1020 anti-neutrinos por segundo, y en menor medida, los aceleradores de partículas.

Fenómenos astrofísicos:

En las supernovas tipo II son los neutrinos los que provocan la expulsión de buena parte de la masa de la estrella al medio interestelar. La emisión de energía en forma de neutrinos es enorme y sólo una pequeña parte se transforma en luz y en energía cinética. Cuando sucedió la SN 1987A los detectores captaron el débil flujo de neutrinos procedentes de la lejana explosión.

Radiación cósmica de fondo

Se cree que, al igual que la radiación de microondas de fondo procedente del Big Bang, hay un fondo de neutrinos de baja energía en nuestro Universo. En la década de 1980 se propuso que éstos pueden ser la explicación de la materia oscura que se piensa que existe en el universo. Los neutrinos tienen una importante ventaja sobre la mayoría de los candidatos a materia oscura: sabemos que existen. Sin embargo, también tienen problemas graves.

De los experimentos de partículas, se sabe que los neutrinos son muy ligeros. Esto significa que se mueven a velocidades cercanas a la de la luz. Así, la materia oscura hecha de neutrinos se denomina «materia oscura caliente». El problema es que, al encontrarse en rápido movimiento, los neutrinos habrían tendido a expandirse uniformemente en el Universo, antes que la expansión cosmológica los enfriara lo suficiente como para concentrarse en cúmulos. Esto causaría que la parte de materia oscura hecha de neutrinos se expandiera, siendo incapaz de formar las grandes estructuras galácticas que vemos.

Además, estas mismas galaxias y grupos de galaxias parecen estar rodeadas de materia oscura que no es lo suficientemente rápida para escapar de estas galaxias. Presumiblemente, esta materia proveyó el núcleo gravitacional para la formación de estas galaxias. Esto implica que los neutrinos constituyen sólo una pequeña parte de la cantidad total de materia oscura.

De los argumentos cosmológicos, los neutrinos reliquia (del fondo de baja energía) son estimados en poseer densidad de 56 por cada centímetro cúbico, y de tener temperatura de 1.9 K (1.7×10−4 eV), esto es, si no poseen masa. En el caso contrario, serían mucho más fríos si su masa excede los 0.001 eV. Aunque su densidad es bastante alta, debido a las extremadamente bajas secciones cruzadas de neutrinos a energías bajo 1 eV, el fondo de neutrinos de baja energía aún no ha sido observado en el laboratorio.

En contraste, neutrinos solares de boro-8, que son emitidos con una mayor energía, han sido detectados definitivamente a pesar de poseer una densidad espacial más baja que la de los neutrino reliquia, alrededor de 6 órdenes de magnitud.

La Tierra y la atmósfera

Las reacciones de desintegración beta de isótopos radiactivos terrestres proporcionan una pequeña fuente de neutrinos, que se producen como consecuencia de la radiación natural de fondo. En particular, las cadenas de desintegración de 238,92U and 232,90Th, así como 40,19K, incluyen desintegración beta que emiten anti-neutrinos. Estos llamados geoneutrinos puede proporcionar información valiosa sobre el interior de la Tierra. Una primera indicación de geoneutrinos fue encontrado por el experimento KamLAND en 2005. KamLAND principales antecedentes en la medición de geoneutrino son los anti-neutrinos procedentes de los reactores. Varios experimentos futuros apuntan a mejorar la medición geoneutrino y estas necesariamente tendrá que estar lejos de los reactores.

Vía(Wikipedia)

Bueno aquí os dejo mi trabajo sobre las partículas subatómicas, pensaba que era un descubrimiento mucho mas antiguo pero me he dado cuenta que se comprovó y se pantentó hace solo 5 años, el 10 de noviembre de 2011.
Me ha parecido bastante interesante el descubrir pequeñas partículas que ni si quiera son visiles pero que a la vez son importantísimas.... Hasta la próxima!!!

lunes, 22 de febrero de 2016

Crucigrama Elementos Químicos





Este es mi crucigrama no e tenido gran dificultad al hacerlo... Os animo a todos a que lo intentéis ya que con un poco de trabajo y esfuerzo se consigue!!! Ánimo y espero q hagáis una os gustara y os parecerá entretenido!!

jueves, 18 de febrero de 2016

Tabla Periódica

Mi tabla periódica es esta ya que a mi me a ayudado bastante a la hora de estudiar y aprenderme los simbolos y nombres de slos" productos químicos" ya que jugando te da la posibilidad de aprender, y por lo menos a mi no me gustaba fallar ya que me restaba puntos....... Creo que es una buena forma de aprender facilmente la tabla periódica.
Espero que os haya servido para aprender al igual que a mi!!!!! Saludos!!!

martes, 2 de febrero de 2016

Elementos Químicos O y H

 EL OXÍGENO

El oxígeno es un elemento químico de número atómico 8 y representado por el símbolo O. En la época en que se le dio esta denominación se creía, incorrectamente, que todos los ácidos requerían oxígeno para su composición. En condiciones normales de presión y temperatura, dos átomos del elemento se enlazan para formar eldioxígeno, un gas diatómico incoloro, inodoro e insípido con fórmula O2. Esta sustancia comprende una importante parte de la atmósfera y resulta necesaria para sostener la vida terrestre.

El oxígeno forma parte del grupo de los anfígenos en la tabla periódica y es un elemento no metálico altamente reactivo que forma fácilmente compuestos (especialmente óxidos) con la mayoría de elementos, excepto con los gases nobles helio y neón. Asimismo, es un fuerte agente oxidante y tiene la segunda electronegatividad más alta de todos los elementos, solo superado por el flúor. Medido por su masa, el oxígeno es el tercer elemento más abundante del universo, tras el hidrógeno y el helio, y el más abundante en la corteza terrestre, formando prácticamente la mitad de su masa.  Debido a su reactividad química, el oxígeno no puede permanecer en la atmósfera terrestre como elemento libre sin ser reabastecido constantemente por la acción fotosintética de los organismos que utilizan la energía solar para producir oxígeno elemental a partir del agua. El oxígeno elemental Osolamente empezó a acumularse en la atmósfera después de la aparición de estos organismos, aproximadamente hace 2500 millones de años. El oxígeno diatómico constituye el 20,8 % del volumen de la atmósfera terrestre.
Dado que constituye la mayor parte de la masa del agua, es también el componente mayoritario de la masa de los seres vivos. Muchas de las moléculas más importantes que forman parte de los seres vivos, como las proteínas, los ácidos nucleicos, los carbohidratos y los lípidos, contienen oxígeno, así como los principales compuestos inorgánicos que forman los caparazones, dientes y huesos animales. El oxígeno elemental se produce por cianobacterias, algas y plantas, y todas las formas complejas de vida lo usan para su respiración celular.


EL HIDRÓGENO
El hidrógeno es un elemento químico de número atómico 1, representado por el símbolo H. Con una masa atómica del 1,00794 (7) u, es el más ligero de la tabla de los elementos. Por lo general, se presenta en su forma molecular, formando el gas diatómico (H2) encondiciones normales. Este gas es inflamableincoloroinodorono metálico e insoluble en agua.
El elemento hidrógeno, por poseer distintas propiedades, no se encuadra claramente en ningún grupo de la tabla periódica, siendo muchas veces colocado en el grupo 1 (o familia 1A) por poseer solo un electrón en la capa de valencia (o capa superior).
El hidrógeno es el elemento químico más abundante, constituyendo aproximadamente el 75 % de la materia visible del universo. En susecuencia principal, las estrellas están compuestas principalmente por hidrógeno en estado de plasma. El hidrógeno elemental es relativamente raro en la Tierra y es producido industrialmente a partir de hidrocarburos como, por ejemplo, el metano. La mayor parte del hidrógeno elemental se obtiene "in situ", es decir, en el lugar y en el momento en el que se necesita. Los mayores mercados en el mundo disfrutan de la utilización del hidrógeno para el mejoramiento de combustibles fósiles (en el proceso de hidrocraqueo) y en la producción de amoníaco (principalmente para el mercado de fertilizantes). El hidrógeno puede obtenerse a partir del agua por un proceso de electrólisis, pero resulta un método mucho más caro que la obtención a partir del gas natural.
El isótopo del hidrógeno que posee mayor ocurrencia, conocido como protio, está formado por un único protón y ningún neutrón. En los compuestos iónicos, puede tener una carga positiva (convirtiéndose en un catión llamado hidrón, H+, compuesto únicamente por un protón, a veces en presencia de 1 o 2 neutrones); o carga negativa (convirtiéndose en un anión conocido como hidruro, H-). También se pueden formar otros isótopos, como el deuterio, con un neutrón, y el tritio, con dos neutrones. En 2001, fue creado en el laboratorio el isótopo 4H y, a partir de 2003, se sintetizaron los isótopos H hasta 7H. El hidrógeno forma compuestos con la mayoría de los elementos y está presente en el agua y en la mayoría de los compuestos orgánicos. Posee un papel particularmente importante en la química ácido - base, en la que muchas reacciones involucran el intercambio de protones (iones hidrógeno, H+) entre moléculas solubles. Puesto que es el único átomo neutro para el cual la ecuación de Schrödinger puede ser resuelta analíticamente, el estudio de la energía y del enlace del átomo de hidrógeno ha sido fundamental hasta el punto en el que tuvo un papel principal en el desarrollo de la mecánica cuántica.